Superficially Porous Silica Particles with Wide Pores for Biomolecular Separations

B. M. Wagner, S. A. Schuster, B. E. Boyes, J. J. Kirkland Advanced Materials Technology, Inc. Wilmington, DE, USA

Study of Wide-pore Fused-Core particles developed to show the effect of:

- 1. Particle size and shell thickness on column efficiency for proteins
- 2. Stationary phase on protein separation performance
- 3. Pore size in separating large proteins
- 4. Shell thickness, particle type, particle size on sample loading
- 5. Particle type (Fused-core, totally porous) on column efficiency for proteins
- 6. Stability of columns with wide-pore Fused-core particles

Physical characteristics of Fused-Core particles

Fused-Core Particle	Particle Size, μm	Pore Size, Å	BET Surface Area, m²/g	Shell Thickness, µm	% Porosity	Pore volume, cm³/g
Halo	2.7	90	135	0.5	75	0.26
Halo Peptide	2.7	160	80	0.5	75	0.29
Wide-pore	2.7	400	30	0.35	59	0.23
Wide-pore	2.7	400	14	0.2	46	0.11
Wide-pore	3.4	400	10	0.2	31	0.068

Halo[®] Wide-pore Fused-core Particles

Effect of Particle on Performance

Columns: 4.6 x 100 mm; Temperature: 60 ^OC Mobile phase: 23.9% acetonitrile/76.1% aqueous trifluoroacetic acid, 0.1% Agilent 1100 with autosampler

Effect of Particle on Performance

Columns: 4.6 x 100 mm; Temperature: 60 °C Mobile Phase: 23.9% acetonitrile/76.1% aqueous trifluoroacetic acid, 0.1% Agilent 1100 with autosampler

Effect of Bonded Phase

Pore Size Distribution of Fused-Core Particles

Large Protein Separations

Effect of Particle Type on Sample Loading

Columns: 4.6 x 100 mm; Temperature: 60 °C; Agilent 1100: Injection: 5 μL Mobile phase- A: water/0.1% trifluoroacetic acid, B: acetonitrile/0.1% trifluoroacetic acid Gradient: 37 - 47 % B in 10 min; Flow rate: 0.5 mL/min

Protein Separations Fused-Core vs. Totally Porous

Columns: 4.6 x 100 mm; Temperature: 60 C Mobile phase: A = water/0.1% TFA; B = Acetonitrile/0.1% TFA Gradient: 20-70% B in 10 min.; Flow rate = 1.5 mL/min; Detection = 215 nm; Injection = 5 μL

400 Å Fused-Core Particle Stability

Column: 2.1 x 100 mm 2.7 μm 400 Å ES-C8; Temperature: 60 °C Mobile phase: A = water/0.1% TFA; B = 70% ACN/30% water/0.1% TFA; Gradient: 9-55% B in 10 min.; Flow rate = 0.5 mL/min; Detection = 220 nm; Injection = 1 μL, Retention times given for each peak, Peak widths at half height for selected peaks (min.)

Peak Identities: In order

Rabbit Skeletal Myosin

Columns: 2.1 x 100 mm; Temperature: 80 C Mobile phase: A = water/0.1% TFA; B = Acetonitrile/0.1% TFA Gradient: 35-65% B in 15 min.; Flow rate = 0.45 mL/min.; Detection = 215 nm; Injection = 1 µL

Structure adapted from Alberts, et al., Molecular Biology of the Cell (© Garland Science 2008)

Conclusions from Study

Chromatographic characteristics of wide-pore particles:

- 1. Particles with 400 Å pores effective for efficiently separating proteins without restricted diffusion
- 2. C4 and C8 may be preferred for separating proteins
- 3. Thicker-shell particles have greater mass loading properties, but somewhat poorer efficiency than thinner-shell particles
- 4. Fused-core particles have performance advantages over totally porous particles for separating proteins
- 5. Columns of 400 Å particles are both efficient and stable

